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Abstract

We present an algorithm for compressing 2D vector fields that
preserves topology. Our approach is to simplify the given data
set using constrained clustering. We employ different types of
global and local error metrics including the earth mover’s distance
metric to measure the degradation in topology as well as weighted
magnitude and angular errors. As a result, we obtain precise error
bounds in the compressed vector fields. Experiments with both
analytic and simulated data sets are presented. Results indicate
that one can obtain significant compression with low errors without
losing topology information.

Keywords: compression, topology, vector fields, error metrics,
clustering.

1

Reducing the size of large data sets while preserving essential
features is an important problem. A great deal of effort has gone
into polygonal mesh reduction and compression algorithms for
computer graphics applications, and to a limited extent, for scalar
data sets. The problem of simplifying or compressing vector data
has been addressed only recently [13, 6]. Typically, the end result
of these algorithms is a simplified view of vector fields using
streamlines, streamtubes, textured images or a superimposition of
these techniques.

In this work, we focus on compression algorithms that tend
to preserve vector field topology. Topology-based methods were
introduced in vector field visualization by Helman and Hesselink
[7]. These methods (i) extract critical points of vector fields, namely
the zeros, (ii) classify critical points, and (iii) compute the stream-
lines emanating from saddle points, referred to as separatrices,
and terminating at other critical points or edges. The separatrices
allow a user to obtain a decomposition of the domain into mutually
disjoint regions that are topologically equivalent to uniform flow.
The topological visualization of the vector field presents a greatly
simplified view of the vector field and often allow the user to grasp
the behavior of the data set quickly.

This paper presents a bottom-up compression algorithm based on
constrained clustering. The algorithm starts with the original data
set and merges adjacent clusters that are closest to each other as
measured by some error criteria. We use a combination of local and
global error criteria. The local error metric is based on a weighted
combination of magnitude and angular error. For a global error
metric, intended to measure the degradation in topology, we utilize
the earth mover’s distance (EMD) metric introduced by Rubner et
al. [10] and utilized for vector field comparisons by Lavin, Batra
and Hesselink [9, 3]. Our approach allows us to obtain significant
compression with low errors while preserving topology.

The structure of the paper is as follows. Section 2 describes
related work. Section 3 discusses the constrained clustering algo-
rithm, the error metrics and the impact of using different weights
on compression ratio and topology preservation. We also briefly
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describe our implementation. Section 5 presents results of our
experiments with some analytic and simulated data sets. Finally,
Section 6 summarizes the results and indicates some future direc-
tions.

2 Related Work

Computation and visualization of vector field topology was intro-
duced by Helman and Hesselink [7]. In particular, they also dis-
cussed computation and classification of different types of critical
points. Critical points are points in the velocity field where the
velocity vector is zero. An index of a critical point is the number
of rotations of the flow around a critical point [12]. A 1st-order
critical point is a critical point with index +1 or -1. Classification of
1st-order critical points is based on the eigenvalues of the velocity
gradient tensor or the Jacobian. Depending on the sign and the type
(real or complex) of the eigenvalues, eight different types of critical
points are identified — attracting node, repelling node, saddle point,
attracting focus, repelling focus, attracting star, repelling star and
center. Visualization of higher order critical points is discussed by
Scheuermann et al. [11].

Although the advantages of topology visualization have been
well recognized, there are some limitations as well. Scheuermann
et al. point out that the standard topology visualization techniques
may not do an adequate job of identifying and visualizing non-
linear topology or higher-order critical points [12]. Kenwright has
observed that some standard topology visualization techniques may
miss other important features such as attachment and separation
lines [8]. The topology preserving algorithm presented in this paper
has been interfaced with the topology extraction code developed by
de Leeuw in [4]. It is certainly possible to interface our compression
algorithm with other topology generation algorithms that capture
additional or higher-order features.

de Leeuw has argued in favor of simplifying (or not preserving)
vector field topology because the standard topology visualization
for a turbulent flow may have too many critical points resulting in
a cluttered image that may be difficult to interpret [4]. Although
in this work, we have focused on a topology preserving algorithm,
our algorithm can be enhanced to incorporate error metrics that can
remove critical points of lesser importance. We will discuss this
later in Section 5.

Independent of the above-mentioned efforts for visualizing vec-
tor field topology, researchers have begun to investigate algorithms
for compressing and simplifying large vector data sets. Telea and
Wijk introduce a clustering algorithm that iteratively simplifies a
vector data set by merging two clusters that are similar [13]. They
also introduce a notion of similarity based on elliptic contours.
The simplified data sets are visualized using arrows and spot noise
textured background. Heckel et al. present an algorithm for hierar-
chical representation of vector fields using clustering and principal
components analysis [6]. The compressed data sets are visualized
using streamlines and streamsurfaces and compared against the
original data sets. In this work, we are interested in exploring the



effect of compression on topology visualization.

To quantify the error introduced due to compression, many dif-
ferent types of error functions are commonly employed in scientific
visualization [15]. In the last couple of years, Lavin, Batra and
Hesselink have utilized a global error metric based on the topology
of vector fields [9, 3]. The global error metric, referred to as the
Earth Mover’s Distance (EMD), was first introduced by Rubner and
Tomasi [10] for fast retrieval of similar images in a large database.
‘We describe the EMD metric later in Section 3. In this work, we use
a weighted combination of local magnitude error, angular error, and
topology-guided node importance error that we introduce later in
Section 3.2. We also study the effect of the weights on the amount
of compression and the preservation or destruction of topology.

Globus et al. [5] discuss 3D vector field topology. Bajaj et al.
discuss visualization of topology of scalar data sets and topology
preserving simplification of scalar data sets [1, 2].

3 Compression

We now begin by presenting an overview of our approach for a
topology preserving compression algorithm. We refer to a compres-
sion algorithm as topology preserving if the original and the com-
pressed data set have the same number and type of critical points at
the same locations. It is certainly possible to relax or strengthen this
definition in different ways. One way to relax the definition would
be to allow small shifting in the locations of critical points. In this
paper, we focus on only those algorithms which preserve the loca-
tions of the original critical points. Therefore, our algorithm can be
viewed as giving a very high weight (infinite) to the error arising
due to changes in the location of the critical points. One way to
strengthen the definition would be to impose additional conditions
(such as the end conditions) on the integral curves originating from
the saddle points. In practice, we have found, as discussed later
in the examples, that integral curves remain well-behaved (closely
following integral curves in the original data set) for significant
amount of compression. Yet further, one may require other features
such as attachment and separation lines be preserved. Preservation
of additional features is an extremely important area of research,
but beyond the scope of this paper.

As a first pre-processing step, we compute the topology of the
given data set. For this purpose, we simply use the topology
generation code of de Leeuw [4]. In the second step, the user inputs
the weights to construct a weighted error metric that is then used
in the compression algorithm. Our program does provide default
weights and we also discuss heuristics for choosing weights. Once
the error metric is formulated, a bottom-up clustering algorithm
is performed that iteratively simplifies the vector data set step-by-
step until the last step when all the data points have exactly the
same value — the average of all the values. In the third step, the
user is presented with an interactive visual display of topology
resulting from the compressed data set and several error graphs
including global EMD error and local magnitude and angular errors
at each step of the algorithm. The user can interactively choose and
view the resulting topology at different compression level or error
thresholds. The user can also enter alternative weights to initiate
the compression algorithm with a new weighted error metric.

We now discuss each of these steps in detail. Section 3.1 de-
scribes the compression algorithm. Section 3.2 describes the error
criteria currently offered in our algorithm. Section 3.3 describe our
experience of using different weights.

3.1 Algorithm

The clustering algorithm used in this work is similar to the one used
by Telea and van Wijk [13]. We use node-based clusters (rather than
cell-based clusters) and a different error criterion. Our input is a 2D
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Figure 1: Compression algorithm applied to a 4x4 vector data set

vector field sampled on a rectilinear grid. Each node of the grid has
a 2D vector associated with it. A cluster of nodes is a contiguous
set of nodes with same vector data associated with all the nodes in
the set.

As the first initialization step, each node belongs to its own
cluster. For every node, the cost (as defined by the error criteria)
of merging it to any of its neighbors is computed. The neighbor
with the minimum associated cost is the preferred one for merging.
The node which has the minimum associated cost of merging to
its preferred neighbor is merged to its neighbor to form a cluster
consisting of two points. The vector data associated with the new
cluster is the average of all the vectors in the cluster. For all the
nodes neighboring the cluster, the cost of merging the nodes to the
new cluster is recomputed.

The above process is now repeated one step at a time to find the
two clusters with minimum associated cost of merging. These two
clusters are merged. The vector associated to the new cluster is the
average of the two clusters. That is, if N1 and Nz are the number
of nodes in the two clusters represented by the vectors ¢ and vz,
then the new cluster has N1 + N points and the associated vector
dis
Niv1 + Navz

Ny + N,

Finally, the cost of merging the neighbors of these two clusters is
updated. This compression step is repeated N — 1 times, where N
is the total number of data points.

Figure 1 illustrates the process of compressing a 4x4 grid of
vector data set in 15 steps using the weights (described later in
Section 3.3) w1 = 1, w2 = 1 and w3 = 0, that is all nodes are
treated identically (ws = 0) and the local magnitude error and the
local angular errors are given equal weights (w; = w2).

-
v =

3.2 Error Criteria

In this work, we use three types of error — global EMD error, local
magnitude and angular error, and node importance error. The final
error is a weighted combination of these three types of error. The
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Figure 2: Classification of critical points according to their phase
plane coordinates: S (saddle point), AN (attracting node), RN
(repelling node), AF (attracting focus), RF (repelling focus), AS
(attracting star). RS (repelling star), C (center).

weights can be provided by the user. We now discuss each of these
three types of error.

EMD Error: The global EMD error is a way to compute the
similarity or dissimilarity between the topology of two vector fields
— the lower the EMD, the more similar the topology of two vector
fields. The EMD between two vector fields depends upon three
parameters: (i) number of critical points, (ii) type of critical points,
and (iii) the eigenvalues associated with each critical point.

Let V1 and V2 be two vector fields. Let n1 and n2 be the number
of critical points in V3 and Va respectively. Each critical point will
be mapped to a circle using a phase plane mapping as follows. Let
A1 and A2 be the two eigenvalues of a critical Point. Let P =
M+Azand Q@ = A\ X Ao Let & = P and § = sign(P? ~

4Q)+/|P? — 4Q|. Finally, let,

&
a = =,
a2 + 42

g = =L

The mapping (A1, A2) to the unit circle (e, B) is referred to as
the phase plane mapping. We will refer to (a, 3) as the phase plane
coordinates of the critical points. This mapping is shown in Figure
2. Critical points can be classified depending upon their phase plane
coordinates [9], as shown in Figure 2.

Let {(e11,811)s -+ s (@1,m15 B1ma ) } and
{(a21,B21), -+, (@2,nq, B2,nz)} be the phase plane coordinates
of the critical points of the vector fields Vi and V> respectively.
Without loss of generality, assume that ny < n2. We add
ng — ny points at the center of the unit circle with the phase
plane coordinates (0,0) for the vector field V1. In other words,
(@i, B1i) = (0,0) for (i = ny + 1,---,n2). The rationale for
doing this is that a point at the center corresponds to a regular
point, that is, not a critical point. With this modification, the
two vector fields have now the same number of points, namely
na points in the associated lists. Now, let us set up a one-to-one
correspondence between the two sets of points. Let -y denote such
a correspondence between the two sets. Let I' be the set of all
possible correspondences between the two sets. Let

oy = Z (15 — a5)2 + (Bri — Poj)?.
v
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That is, ¢, is the sum of the Euclidean distances between the
corresponding points. The EMD between the two vector fields is
now defined to be the minimum ¢, amongst all possible correspon-
dences between the two sets. That is,

EMD(WV1,V2) = minyercy.

Conceptually, EMD is the minimum amount of work that must
be performed to move one set of points to another.

Local Magnitude and Angular Error: Local magnitude error
M and angular error 8 between two vectors ¥ and vz are simply
defined as M = magnitude(vi — v3), and 8 = angle(vi, v3).

Node Importance Error: This error I can be associated with a
node depending upon the importance of preserving a node. Since
we allow user-defined weights for each kind of error, one can
assume that this error can be specified to lie between 0 and 1.
In this work, for topology preserving compression algorithms, we
assign the importance to be 1 for critical points and its neighbors
and assign the importance as 0 for all the remaining points. If J
is chosen to be zero, then the compression algorithm reduces to
an ordinary compression algorithm that does not take into account
the topology information. Later we will compare the performance
of our topology preserving compression algorithms with the non-
preserving algorithms.

3.3 Effect of Weights

Weighted Error: The weighted error E for the compression algo-
rithm is
E = w1 M + w2f + wsl,

where wi, we and ws are the weights associated with the local
magnitude error, local angular error and the node importance error
respectively. For topology preserving compression algorithms, we
choose very high weight w3 (typically 10,000) to ensure that the
critical points are preserved a long way in the compression algo-
rithm.

We illustrate the use of weights by presenting an example from
the following data set. The data set we use is the gradient flow field
associated with the following height field on the unit square:

3 _(9:—2)’;;91-2)2 1 _gsa—nz%gsl—sz’

Ze + 53 +
2 t1)2

R

This height field is one of the Franke’s data sets. We sampled the
above data set on a grid size of 38x38.

We explored the effect of choosing different weights by experi-
menting with different values of the weights (w1, w2, ws). Figure
3 presents errors associated at different levels of compression for
some of these weights. Figure 4 displays the error graphs associated
with six of these weights as the compression is gradually increased.

f(z,y)

1 —(0s-02—(9y-77

Weights | EMD | Wgt. { Mag. | Ang. | Compression
Error | Error | Error | Error
(1,0,0) 584 | 012 1 0.12 | 1.34 63.3
27.13 1 0.75 | 0.75 | 3.17 90.0
(0,1,0) 18.06 | 0.70 [ 2.84 | 0.70 90.0
(1,1,0) 122041 074 | 1.10 | 1.10 90.0
(1,0,10k) | 0.00 | 1.19 | 1.19 | 2.84 90.0
(0,1,10k) | 0.00 | 1.00 | 1.48 | 1.21 90.0
(1,1,10k) | 0.00 | 0.78 | 2.89 | 0.78 90.0

Figure 3: Compression statistics for the Franke data set. All values
are in percentages.
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Figure 4: Error vs. compression graphs for the Franke data set with
following weights: (i) upper left: (1,0,0), (i) upper right: (0,1,0),
(iit) middle left: (1,1,0), (iv) middle right: (1,0,10k), (v) lower left:
(0,1,10k), (vi) lower right: (1,1,10k).

The first five images of Figure 5 show the critical points and the
integral curves computed from the original and the compressed data
sets.

We say a few words about the topology display in the color
plate. Interior critical points are shown as red disks (spirals) if
they are attracting nodes (foci respectively) and shown as green
disks (spirals) if they are repelling nodes (foci respectively). Saddle
points are shown as blue disks. A set of four integral curves shown
in blue and red lines are computed originating from each saddle
point in the directions of the eigenvectors. In addition, positive
boundary switch points are shown as blue disks along the boundary.
A positive boundary switch point is a point where the flow switches
from outward to inward; a negative boundary switch point is a
point where the flow switches from inward to outward. For further
details, we refer the reader to [4]. Integral curves are also computed
from the positive boundary switch points. In addition, the boundary
is red where the flow is outbound and the boundary is green when
the flow is inbound. For the Franke’s data set, there are five critical
points (2 saddles, 2 attracting nodes and 1 repelling node) in the
interior and two positive boundary switch points.

For this data set, in all the cases except for (1,0,0) weight,
irrespective of whether the topology preserving constraint of w3 =
10k was imposed or not, the local angular and magnitude errors
are rather small all the way up to 90% compression, as shown in
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Figure 3. We define the cutoff point as the level of compression
where both the number of critical points and the type of critical
points remain the same as the original topology. These cutoff
points are shown as vertical grey lines in Figure 4. The cutoff
point is reached for the weight (1, 0, 0) at 63.3% compression level.
Topology generated from the compressed data is shown in the upper
middle image next to the original topology shown in the upper left
of Figure 5. For all the remaining weights, the cutoff compression
was in the range of 92% to 95%. We observed that the degradation
in the visual appearance of the integral curves very close to the
cutoff point is significant. Figures 5 (d) and (e) show the topology
generated after compressing the data by 90% using the weights
(1,1,0) and (1,1, 10%) respectively. As is evident, the topology
remains unchanged at these levels of compression. For contrast,
we also display the topology after 90% compression in Figure 5 (c)
for the weight (1, 0, 0). In this case, although the number of critical
points remain the same, two critical points have changed from being
attracting nodes to attracting foci.

It is interesting to observe (see Figures 3 and 4 that for weights
ws = 10k, EMD errors are zero all the way upto 90% compression.
For ws = 0, EMD errors increase 18% to 27%. However, except
in the case of the weight (1,0,0), EMD errors are attributed to
the change in the o and 3 values associated with the critical point,
while the number of critical points remain the same, as is shown
by the horizontal thin red lines in Figure 4. We also know from
Figure 5 that the type of critical points remain the same as well
in these cases. We also explored many other values in the weight
space such as (1, 2, 10k), (0, 4, 10k), and found consistent 90% or
higher cutoff points, although the behavior was non-linear.

In summary, for this data set, we obtained topology preserving
90% compression with very low angular and magnitude errors
and zero EMD error using the constrained (ws = 10k) cluster
algorithm for most weights. We were also able to obtain topology
preserving 90% compression with very low angular and magnitude
errors, although with high EMD errors, even with the unconstrained
(ws = 0) cluster algorithm for many weights.

4

In this section, we present some implementation details — namely
the interactive capability to investigate the effects of different levels
of compression and weights on topology and error using visual
display and graphical user interface.

We implemented the compression algorithm in C and use the
OpenGL and XForms libraries for the SGI platform. Our graphical
user interface is highly interactive and user friendly. The interface
contains buttons, sliders, input fields, and counters. These inter-
faces facilitate user construction of various weighted error metrics,
resulting in different types of compression of the data set. A visual
graph provides a global view of the compression errors (EMD,
weighted error, magnitude, and angular) and the number of critical
points associated with each compression level. A user can step
though the graph by compression level, percentage compression,
or error threshold. As a user traverses the graph the errors and
topology at the indicated compression level can be viewed simulta-
neously. Errors are also shown numerically as a user traverses the
error graph.

In addition, vector glyphs are used to display the vector field.
A user can better control the visual display of a dense vector field
by adjusting the vector glyph length (unit, unit scale or default),
adjusting the size of the critical point glyphs and modifying the
width of the integral lines. Scaling, translations and rotation can
also be applied to the vector field to zoom-in and isolate any partic-
ular area of interest. These features provide the user with several
investigational methods to draw conclusions about compression
bounds for a data set.

Implementation



(a) Original (b) 63.3% compression with (1,0,0)

T

(8) 75% compression with (0,1,10k) (h) 80% compression with (0,1,10k) (i) 85% compression with (0,1,10k)
Figure 5: Topology visualization superimposed with vector glyphs at varying levels of compression. The first five images belong to the Franke
data set; the last four images belong to example 1. (a) original topology has 5 interior criitcal points and 2 positive boundary switch points,
(b) topology is preserved, but EMD error is not zero, (c) two critical points change from attracting nodes to attracting foci, (d) topology is
preserved, but EMD error is not zero, (e) topology is preserved and EMD error is zero, (f) original topology with 7 interior critical points and
2 positive boundary switch points, (g) topology is preserved and EMD error is zero, (h) topology is preserved and EMD error is still zero, and

(i) topology is destroyed by addition of a critical point.
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5 Resulits

We now discuss the application of our compression algorithm to
two data sets.

Example 1: Let v and v, denotes the z-component and the y-
component of the 2D vector field respectively. The first data set is
then defined by the following equations:

z" — 2%+ .522° + .34z — .62° + .632% — .43z
+3a:5y2 +1.92z5y — .38.7:4;1;2 - .681:4312 + 3:c3y‘1
+3.84z%y° — 482%y% — 1.472%y + 2.24z7%y*
+3.43z%y° + 2.252%y* + 1.852%y + zy® + 1.9229°
—zy* - 5.392y° — 5.62zy” — 2.51zy + 1.62y°
+4.1y° + 3.68y" + 1.82y° + 1.22y + .78y + .19;
~1.09z° + 1.86z° — 1.56z* + 1.01z° — .672° + .11z
—2% + 2.622%y — 32%y® — 5.19z%% — 4.122%y
+5.242%y% + 8.512%y% + 5.12%y — 32%° - 7.112%y*
—6.72¢%y® — 5.862%y® — 3.62z%y" + 2.62y°

Vz
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oo 00006000000
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Figure 6: Error vs. compression graphs for data set in example 1
with following weights: (i) upper left: (1,0,0), (ii) upper right:
(1,1,0), (iii) middle left: (0,1,0), (iv) middle right: (1,0,10k), (v)
lower left: (1,1,10k), (vi) lower right: (0,1,10k).
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Weights | EMD | Wgt. | Mag. | Ang. | Cutoff |
Error | Error | Error | Error | Point
(1,0,0) 0.00 | 0.00 | 0.00 | 0.00 0.00
(1,1,0) 004 | 003 | 002 [ 0.21 15.9
0,1,0) 073 | 025 | 1055 | 0.25 53
(1,0,10k) | 0.00 | 0.01 0.01 1.92 24.8
(1,1,10k) | 0.00 | 048 | 0.55 | 2.68 64.1
(0,1,10k) | 0.00 | 3.43 | 42.46 | 3.43 83.2

Figure 7: Compression statistics for the data set in example 1. All
values are percentages.

This seventh degree polynomial vector field is obtained by un-
winding the Clifford algebra expression for the polynomial vector
field used in {12]. Figure 7 presents errors associated at different
levels of compression for six different weights. Figure 6 displays
the error graphs associated with these weights as the compression is
gradually increased. The last four images of Figure 5 show the crit-
ical points and the integral curves computed from the original and
the compressed data sets using the weight (0, 1, 10k) at different
levels of compression.

The topology program captures 7 critical points in the interior
and 2 positive boundary switch points for this data set as shown
in the middle right image of Figure 5. Furthermore, in this case,
three of the critical points are very close to each other. For this
data set, the cutoff points using unconstrained cluster algorithm
(ws = 0) allow very little compression. In fact, for the weight
(1,0,0), the type of a critical point changes in the very first step
as shown in the upper left graph of Figure 6. Even for the other
two weights (1, 1,0) and (0, 1, 0), the cutoff points allow 15.9%
and 53% compression only, as shown in Figure 7. Figure 6 shows
that at these levels of compression, although the number of critical
points remain the same, the type of critical point changes. Even
for the unconstrained weights, with weight (1,0, 10k), the cutoff
compression is only 24.8%. The cutoff compression of 64.1%
using the weight (1, 1, 10k) is good, although a much better 83.2%
compression is achieved using the weight (0, 1, 10k) while keeping
the EMD error at zero and local magnitude and angular errors still
rather small. For this weight, we have displayed the topology
obtained by compressing the data set by 75%, 80% and 85%
respectively in the lower left, lower middle and the lower right
images of Figure 5. The first two of these are topology preserving
compression, while the last one (past the cutoff point) introduces an
additional saddle point destroying the topology as well as making
the integral curves appear quite choppy.

In summary, this data set is sensitive to the choice of weights.
Significant compression preserving topology can still be achieved
with low errors by using a constrained cluster algorithm (ws =
10k) and giving high weight to the local angular error.

Example 2: For the final example, we use the skin friction
data set obtained by direct numerical simulation of a turbulent flow
around a square cylinder. The data was generated by R.W.C.P.
Verstappen and A.E.P. Veldman of the University of Groningen (the
Netherlands) and is the same data set used in [4]). The technique
used to generate the data is described in [14]. The skin friction is
computed on one of the four sides of the cylinder resulting in a data
set with a resolution of 104 x 64.

For the skin friction data set, we present the results by picking a
promising representative from each of the unconstrained and con-
strained cluster algorithm from the weight space that we explored.
These representative weights are (1,1,0) and (1,1, 10k). Figure
11 presents errors associated with and the number of critical points
at different levels of compression for these two weights. Figure
10 displays the error graphs associated with these two weights as
the compression is gradually increased. Images of Figures 8 and 9



Figure 8: Skin friction dataset: (a) Original (b) 55% compression
with weights (1,1,10k) (c) 65% compression with weights (1,1,10k)

show the critical points and the integral curves computed from the
original and the compressed data sets.

The skin friction data set has 338 critical points in the interior.
The original topology is shown in the left image of Figure 8. This
data set has a large number of critical points many of them very
close together. For this data set, the cutoff points using the weights
(1,1,0) and (1,1,10k) produce 4.7% and 37.6% compression
only. As can be seen in the left graph of Figure 9, critical points
(downward sloping thin red line) start getting eliminated at the
very beginning using the unconstrained algorithm. The pace of the
elimination of the critical points is slow almost all the way up to
65% compression. Even though the original topology is destroyed,
the EMD error is not too large (8% approximately). Surprisingly,
the local magnitude and angular error remains small all the way up
to 95% compression. Topology obtained at 55%, 65% and 95%
compression levels using the unconstrained cluster algorithm with
the weight (1,1,0) is shown in Figure 9. Even at high levels
of compression, it seems that some of the major features such
as attachement and separation lines seem to remain intact. This
example seems to suggest that the unconstrained cluster algorithm
can perhaps be used for simplifying (non-preserving) topology.

For the constrained algorithm with the weights (1,1, 10k), the
cutoff compression is 37.6% as mentioned before, as is indicated
by a hardly noticeable jump in the thin horizontal line in the right
graph of Figure 10. However, the compression can be increased
all the way up to 51.3% with an addition of 2 more critical points
(while keeping all the original critical points). Topology obtained
by compressing the data set by 55% and 65% using the weights
(1,1, 10k) are shown in the middle and the right images of Fig-
ure 8. For this example, topology preserving compression ratio
(37.6%) is rather small; however, significant compression (60%)
can be achieved with low angular, magnitude and topology error as
measured by the EMD.

Figure 9: Skin friction dataset: (a) 55% compression with weights
(1,1,0) (b) 65% compression with weights (1,1,0) (¢) 95% compres-
sion with weights (1,1,0)
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Figure 10: Error vs. compression graphs for the skin friction data
set with following weights: (i) left: (1,1,0), (ii) right: (1,1,10k).

Weights | EMD | Wgt. | Mag. | Ang. | Crit. [ Compression
Error | Error | Error | Error | Pts.
(1,1,0) .26 0.00 | 0.00 | 0.00 | 338 4.7
1.21 0.01 0.01 0.00 | 339 12.8
830 | 0.02 [ 0.08 | 0.03 | 316 55.0
794 | 003 | 009 | 0.03 | 317 60.0
8.69 | 0.03 | 0.13 | 0.04 | 315 65.0
6744 | 490 | 091 | 052 | 113 95.0
(1,1,10k) | 0.00 | 0.01 | 004 | 0.01 | 338 37.6
0.58 0.02 | 0.11 0.03 | 340 51.3
1.16 0.03 0.14 | 0.04 | 342 55.0
287 | 006 | 022 | 0.07 | 348 60.0
4.78 0.13 034 | 0.14 | 355 65.0

Figure 11: Compression statistics for the skin friction data set. All
values (except the number of critical points) are percentages.
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6 Discussion and Conclusions

We have presented a compression algorithm for 2D vector fields
that can preserve topology while maintaining low magnitude and
angular errors. We have been able to achieve 90% topology
preserving compression in a data set where there are very few
critical points. In another data set, where critical points are close
together but not too many, we have been able to achieve 80%
topology preserving compression. In a third data set, characterized
by a large number of critical points, we have been able to achieve
approximately 37% compression while preserving topology or 50%
compression with a very small EMD error.

We have also provided a visual display and interactive environ-
ment for users to experiment with new error metrics and view com-
pression statistics, vector clusters and topology. Our compression
algorithm can easily be enhanced to deal with higher order critical
points as well.

Although topology is an important feature of fluid flow, presence
of a large number of critical points can diminish the utility of a
topology visualization by creating a cluttered display [4]. In these
cases, the compression algorithm presented in this paper can also
be used to simplify the topology by reducing the number of critical
points. To this purpose, it may be judicious to assign different
weights w3 (varying levels of importance) to critical points —
lower weights to the critical points with lesser influence and higher
weights to critical points with higher influence. The influence
of a critical point can be measured in terms of flow area or the
distance to the nearest critical point or by a new metric. We plan
to investigate this approach in a future work. Alternatively, one can
use our topology preserving compression algorithm as the first pass
of a two-pass compression algorithm. The second pass algorithm
can then focus on simplifying the topology using a critical point
influence criteria.

There are many other interesting directions of investigations that
" this research has opened up. Here we mention two such possibilities
—a new global error metric and a top-down compression algorithm.
EMD measures the distance between two vector fields simply based
on the number, type and phase plane coordinates of the critical
points. What about a new metric that takes into account the lo-
cations of critical points, properties of integral curves or additional
features of the flow? Another possibility is to explore a top-down
compression algorithm. Our bottom-up compression algorithm
precomputes the topology of the original data set. What if this
luxury is not available? A top-down compression algorithm will
start with meagre data and add details to the data set successively.
Can such an algorithm determine that the original topology (or
close to the original topology) is captured so that there is no need
to add additional details to the data set? We hope to pursue some of
these research directions as well.
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